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ABSTRACT 
3 36-36 

The paper shows how one may avoid the unreasonably small step-size 
required for  the numerical integration of some systems of linear ordinary 
differential equations with nearly constant coefficients. The non-homogeneous 
parts of the equations are represented by polynomials over short time inter- 
vals, and closed form expressions for the integrals on these time intervals 
are obtained in terms of the polynomial coefficients. 

The paper is particularly concerned with equations representing 

1 fl if7-/!-/6( 
electrical networks utilized in missile control systems. 
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SUMMARY 

The paper shows how one may avoid the unreasonably small step-size 
required for the numerical integration of some systems of linear ordinary 
differential equations with nearly constant coefficients. The non-homogeneous 
parts of the equations are represented by polynomials over short  time inter- 
vals, and closed form expressions for the integrals on these time intervals 
are obtained in terms of the polynomial coefficients. 

The paper is particularly concerned with equations representing 
electrical networks utilized in missile control systems. 

SECTION I. INTRODUCTION 

The control systems of many missiles utilize electrical networks 
known as filters. A filter can be used to delay, amplify, o r  modify in some 
other manner signals given to it by means of an e'lectromotive force Ein. The 
modified signal Eout is also an electromotive force. Such filters can be rep- 
resented mathematically by means of systems of first order ordinary linear 
differential equations. However , the numerical integration of these equations 
often requires an unreasonably long time, even on a high speed digital com- 
puter. The problem is particularly frustrating because of the hope that the 
trajectory and control equations of a missile may be integrated on digital 
computers in real time o r  simultaneously with the flight of the missile. 

The main purpose of this paper is to propose a solution which is now 
in use at the Marshall Space Flight Center. Actually, the method is applicable 
to any system of ordinary linear differential equations. 



The precedure may be applied to find Eout a t  time T + A t  in terms of 
conditions given at time T whenever it i s  possible to accurately represent Ein 
as some function, such a s  a polynomial or trigonometric function, over the 
interval from T to T + At. When it is possible to represent Ein in such a 
manner, the linear differential equations may be solved in closed form over 
the interval, and the method presented herein is a simple and concise tech- 
nique for doing just that. A similar procedure was  proposed in reference [ I], 
but it was developed only for the most simple filters. 

I 2 

The appendix briefly discusses the origin of the numerical difficulties 
encountered with linear differential equations. It also uses the analysis given 
in the previous sections to show how these difficulties may be removed in 
many cases in order to allow for numerical integration at an acceptable step- 
size. 

SECTION 11. A PRECISE STATEMENT OF THE PROBLEM 

The problem under consideration is that of solving the system 

- - 1: = A q + E i n b  

- T -  i E o u t = U  

in closed form at time T + A t  in terms of conditions at time T when given that 
Ein'is a polynomial 

k 
rkt 

k=O 
over the interval 

- -  
Here q, b, and 
The symbol; 

represent n x I matrices and A represents an n x n matrix. 
stands for the transpose of u. 

We assume that A ,  b, and Ti are known and that 7j has the dependent 
variables as i ts  components. Furthermore, it is assumed that A is similar 
to a diagonal matrix, i. e. , that there exists a non-singular matrix P such that 

P-* A P  = D , 



where D is a diagonal matrix having the eigenvalue hi of A in its i th diagonal 
position for i = I, 2,  . . . , n. The latter is true for any matrix whose eigen- 
values are all distinct, as wel l  as for some other matrices. 

The i th column ?;. of P is necessarily a right eigenvector correspond- 
ing to Ai. The i th row o# TiT of P'' is a left eigenvector. 

SECTION ID. A SIMPLIFYING TRANSFORMATION 

We define a vector 5 by means of the equation 

- -1 - 
P = p  q 

Substitution of = P 3 into (1) yields 

P $  = A ( P j 3 )  + E i n 6  

-T 
Eout = u  ( P i )  

p = (P-IAP) P + E i n  ( P  

T E = (U P) 5 
out 

E =V'p J 
out 

where 

- -1- - T  -T c = P b , v  = u  P .  

- -  Letting pi, ci, and vi represent ?he i th components of p, c y  and 7, 
respectively, we  have {: = A. p* + c i  E in} 

i = i  

( i = i ,  ..., n) 

- - ViPi out 

3 



h. = h.h. + y. E { e out :i i = i  ' h r  } 
where 

h = v .  p. 
i 1 1  

for i = 1, . .. ,n .  

( i =  I, ..., n) 

( 2) 

The initial value of h. is zero if 4 = 0 initially as is usually the case. 
1 

SECTION IV. A CLOSED FORM SOLUTION 

The standard solution fo r  the equation 

h. = A. h. + y.  E 
1 1 1  1 in 

is 

where C.  is the constant of integration. 
1 

Before integrating further, we are  forced to assume some form for Ein( t) . 
We assume that 

k m 
Ein(t) = r k (t-T) 

k=O 



over the interval 

T <  - -  t < T + A t .  

Thus , 

dt 
'T + A t  m T + A t  k -h i  (t-T) 

e (t-T)E. dt= rG 1- JT .L (t-T) e 
k=O ?E 

k - A i 7  
m At 

k=O 
dT Y E.  d t =  r T e -Ai (t-T) T +At  

-e 
k O  in j T  

where T = t - T. If Ai # 0, repeated integration by parts yields 

A few straightforward manipulations give us 

S !  
s=o 

m 
+At 

h i ( T + A t )  = h . ( T )  e + y i  1 k+l 
k=O A. 

1 
1 

If Ai At  is small, the quantity 

1 AiAt 
S! 

s =o 

can be computed by means of the series 
S 

(AiAt) 
- 

( s  + k +  I) ! k !  (At)  k+i 2 
s=o 

k r 

( 3 )  

(4) 

truncated after several terms, thereby avoiding subtraction of a number 
f rom another nearly equal to it and, consequently, loss of perhaps several 
significant figures. Observe that if A. = 0, (4) becomes 

1 

k + i  

5 



which is exactly what one should obtain in the place of (3)  for  the case in 
which Xi = 0. Therefore, (4 )  is applicable to the case in which Xi = 0. 

SECTION V. SUMMARY 

m 

k=O 

E ( T + A t )  = h . ( T + A t )  , 

In summary, 

h. ( T + A t )  = h i  (T) *'ehiAt + 
1 

n 

i=i out 1 

where I- 

1 ehiAt - 

k !  
= 'i k + i  

i 
A ik 

fik:l 
- 

k (hiA# 

s- !  s=o 

and E. and 7 
scaleh in such a manner that 

are right and left eigenvectors of A corresponding to A. and i 1 

- T- 
'i i x = i .  

Equations ( 5 )  give the desired closed form solution which expresses 
Eout ( T  + At) in terms of conditions at time T. If the value of At is changed 
during the process of integration, the coefficients ' 

A i  At 
( i  = I,.. . ,n ;  k = i , .  , . , m )  ' fik e 

must be recomputed. 

On examination of ( 5 ) ,  it may be seen that the parameters 

A i '  Yi ( i =  I, ..., n) 

6 



completely determine the responses of the filter, assuming a particular 

modified, then the parameters ( 6) wil l  change (theoretically) . For example 
if the elements of A ,  6, a n d i  vary with time, then A. and yi will  vary with 
time. 
purposes, 

. function Ein and particular initial conditions are given. If the filter is 

(In deriving the equations (5) , it w a s  assumed that, for  practical 
and yi are constant over the time interval from T to T + At. ) 

It should be observed that A y h., and f may be complex, but in i’ i’ 1 ik practice the computations may be easily handled in real  arithmetic if one 
works with pairs of complex conjugates in the appropriate manner. 

In passiug, we note that if the polynomial coefficients r (k = 0, i, . . . . , k m) are expressed as linear combinations of 

E (to + Ut) ( k  = 0, i , .  . . , m )  in 

for some value to of time, then the first of equations ( 5 )  may be rewritten as 

m 

k=O 
E ( t o + k & )  gik in h. (T+At) = h i  (T) * e 

I 

for some constants g . ik 

SECTION VL AN EXAMPLE 

The filter shown in Figure 1 was represented by means of nine linear 
first order differential equations. Using 

E = s i n  ( 2 n t )  , 
in 

was  determined by the closed form method described in this paper. Eout 

Linear interpolation was  used to represent E 
employed. All initial conditions were taken to be zero. Time increments of 
A t  = . 2  sec. ,  At  = .06  sec. ,  and At = . 0 2  sec. were  utilized. 

on each time interval in 

For comparison, the integration w a s  also perfdrmed by the fourth order 
Runge-Kutta method using A t  = . 006  sec. The latter technique diverged when 
At = .007  sec. was employed. 
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FIGURE 2. INTEGRATION RESULTS FOR E = sin (2rt )  
Ein in 

t (Becs. ) 
-1 

1 

FIGURE 3. EXCITING FUNCTION: Sin ( 2  r t )  REPRESENTED BY 
LINE SEGMENTS. 
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The integration results a r e  shown in Figure 2. In Figure 3, we  show 
the results of representation of sin (27rt ) by line segments over the A t  = . 2  
sec. intervals. The difference between the solid and dashed curves in Figure 
2 is accounted for.primarily by the difference between the curves in Figure 3. 

SECTION VII. APPENDIX 

The analysis presented in this paper leads to a method that in many 
cases may be used to alter a system of linear differential equations in a manner 
which will  not significantly affect the solution but will enable one to consider- 
ably enlarge the step-size required for numerical integration. If one lets 
E in = sin ( u t ) ,  it  can be shown that 

provided hi is real, hi (0) = 0, and 

ei = tan-' ( w h i )  . 
The largest eigenvalue in magnitude of the example of the preceding 

section is equal to about -640, whereas the smallest is.approximate1y -. 78. 
Call these eigenvalues A, and h, respectively. The parameters yi and y2 in 
thiq case are  

If u 2 'IT, then it is easily verified that the contribution of hi in ( 5) to 
Eout is small compared to that of h2. In fact ,  the contribution of hi does not 
quite show up in Figure 2. 

The h, transient term 

where a1 is a constant, is even of less significance, but this is the very term 
which gives the most trouble t~ numerical integration techniques (see [ 21 ) ; 

i o  



m even though w is small, its m th derivative A, w can be very large and, con- 
sequently, very troublesome. 

Now, returning to the general problem, let use suppose that hi is 
negligibly small for i = I, . . . , N and that E (0)  = 0 (i.  e. , that 7j (0)  = 0).  We 
have shown that 

( i  = I, ..., n) 

(7) 

hi = A h .  + yiEin 

1" out = i=i 1 hi J 
1 1  I' 

If we set and -yi equal to zero for .i = I , .  . . , N, then hi ( t)  = 0 for 
i = I , .  . . , N. Consequently, the system ( 7 )  with 

= o  ( i = l ,  . . . ,  N) - Ai - Yi 

will  have nearly the same solution as the original system ( I ) .  This new sys- 
tem is exactly what is  obtained by replacing ( I )  with 

where 
N 

A o = A -  AiVi , 
i= 1 

It can be easily shown that A. has the same eigenvalues and eigenvectors 
as A with the exception that Ai,. . . , A N  are replaced with zeros (as desired). 
On the other hand, To satisfies the equations: 

- = 0 'i 

- T--- T- Yi bo - Yi b 

(i = I , .  . . ;N) 

( i = N +  I, . . . ,  n).  



This means that the parameters y. computed in terms of bo rather than;, are 
left unchanged for i = N + I,. . , , n  and are zero (as desired) for i = I,. . . ,N.  

1 

Using fourth order Runge - Kutta and the problem of the precedjng 
section, the system (8) was  integrated after removal of 

Case I the eigenvalue -640 of largest magnitude,. and 

Case I1 the two eigenvalues, -640 and -46, of largest 
magnitudes. 

In Case I a s t eps i ze  of .085 sec. led to close agreement with the correct 
solution, (Using .09 sec. there was no agreement. ) In Case I1 a step-size 
of .I sec. gave fairly close agreement with the correct solution. 

In summary, using (8 ) ,  it is often (perhaps always in practical 
problems) possible to substantially increase the step-size required for nu- , 

merical integration of (I) in those cases in which thqre is at least one eigen- 
value considerably larger in magnitude than the eigenvalue smallest in magni- 
tude. 
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